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Modeling of Coplanar Stripline Discontinuities
Rainee N. Simons, Senior Member, IEEE, Nihad I. Dib, Member, IEEE,

and Linda P. B. Katehi, Fellow, IEEE

Abstract— The paper presents a technique to obtain lumped
equivalent circuit models for typical coplanar stripline (CPS)

discontinuities such as an open circuit, a short circuit, and a

series gap in one of the strip conductors and gives their element

values as a function of the discontinuity physical dimensions for a
specific substrate. The model element values are determined from

the discontinuity scattering parameters which are de-embedded
from the measured scattering parameters using a thru-reflect-
line (TRL) algorithm. In addition, the resonant frequency of

a spur-slot is presented as a function of the spur length. The

experimental results are validated by data obtained using the
finite-difference time-domain (FDTD) technique.

I. INTRODUCTION

A coplanm stripline (CPS) [1] on a dielectric substrate of

thickness D consists of a pair of strip conductors of width

W and separated by a narrow slot of width S, as shown in

Fig. 1. In this transmission line, the electric field lines extend

across the slot and the magnetic field lines encircle the strip

conductors. In the past, the microstrip line and the coplanar

waveguide (CPW) were the two preferred transmission media

for realizing microwave integrated circuits (MIC’ s). Other

transmission media such as slot line and CPS were perceived to

have excess loss and transitions to microsttip and CPW in real

applications were considered to be too complex. However with

the advent of uniplanar circuits and CPW with finite ground

planes this perception has changed. The CPS has several

advantages over conventional rnicrostrip line: it facilitates

easy shunt as well as series mounting of active and passive

devices and it eliminates the need for wraparound and via

holes which introduce additional parasitic elements [2], [3].

The CPS has all the advantages of coplanar waveguide (CPW)

which is the dual structure and in addition, the CPS makes

efficient use of the wafer area and thus the die size per

circuit function is small. This results in lower cost and larger

number of circuit functions for a given die size. Also, the

CPS propagation parameters are independent of the substrate

thickness beyond a certain critical thickness which simplifies

heat sinking and circuit packaging. Previous applications of

CPS includes feed network for printed dipoles and linearly

tapered slot antennas for which a transition from CPW to CPS

[4] and from tnicrostrip to CPS [5], respectively, have been

fabricated and characterized.
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Fig. 1. Cross section of the copknm stripline. D = 0.03 in, c, = 10.2,
T = 0.00067 in.

In the past, lumped-element equivalent circuit models for

discontinuities in planar microwave transmission media, such

as, tnicrostrip and CPW have been obtained using resonator

[6] and two-tier de-embedding [7] techniques, respectively.

This paper presents for the first time a technique to ob-

tain lumped-element equivalent circuit models for typical

CPS discontinuities together with element values as a func-

tion of the discontinuity physical dimensions for a specific

substrate. These element values are determined from the

discontinuity scattering parameters (S-parameters) which are

de-embedded from the measured S-parameters using a thru-

reflect-line (TRL) algorithm. The discontinuities characterized

in this paper are an abrupt open circuit, an open circuit with

an extended strip conductor, a short circuit, a series gap

in one of the strip conductors, and a spur-slot. These CPS

discontinuities are fabricated on a 0.03 in thick RT-Duroid

6010 substrate (c, = 10.2) with 0.5 oz. copper cladding. These

discontinuities are characterized over the frequency range of 2

to 12 GHz. For validation purposes, the experimental results

are compared to data obtained using the finite-difference time-

domairt (FDTD) method [8]. Although, the results presented

in the paper are for a specific substrate, the measurement

technique as well as the numerical simulation method are quite

general and can easily be extended to other substrate materials

and higher frequencies. The CPS has potential applications in

the design of microwave components such as filters, couplers,

mixers, oscillators, and amplifiers for the emerging wireless

communications.

II. THEORETICAL AND EXPERIMENTAL CHARACTERIZATION

TECHNIQUES FOR CPS DISCONTINUITIES

A. Theory

The application of the FDTD technique to planar trans-

mission lines has been described extensively in the litera-

ture [9]–[1 1]. In this method, Maxwell’s curl equations are

expressed in discretized space and time domains and are

then used to simulate the propagation of an initial excita-
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tion in a “leapfrog” manner. In order to characterize any

planar discontinuity, propagation of a specific time-dependent

function, usually a Gaussian pulse, through the structure is

simulated using the FDTD technique. A Gaussian pulse is

used here because it is smoothly varying in time, and its

Fourier transform is also aGaussian function centered at zero

frequency. Following the time and space discretizations of the

electric and magnetic field components, the FDTD equivalents

of Maxwell’s equations are then used to update the spatial

distributions of these components at alternating half-time

steps. The space steps are carefully chosen such that integral

numbers of them can approximate the various dimensions of

the structure. The super-absorbing first-order Mur boundary

condition is utilized to terminate the FDTD lattice at the front

and back planes in order to simulate infinite lines. On the

other hand, the first-order Mur boundary condition is used on

the other walls to simulate an open structure,

B. Experiment

In order to separate the effect of the connecting transmission

lines on the discontinuities, the automatic network analyzer

(HP8510C) is calibrated using a TRL calibration technique

[12]. This technique relies on standards which are fabricated

besides the discontinuities to be characterized on a single

substrate. Fig. 2 shows a set of CPS TRL on-wafer standards

which are used for calibrating the network analyzer. The

standards consist of a CPS thru, a CPS short circuit and

a CPS delay line. The calibration of the network analyzer

is done using National Institute of Standards and Technol-

ogy (NIST) de-embedding software program [ 13]–[ 15]. This

program solves a 12-term error model from the thru line

two-port measurements, the delay line two-port measurements

and the two one-port reflection measurements. The program

then establishes electrical reference planes to which all de-

embedded S-parameters are referred. These planes are shown

by dashed lines in Fig. 2. The reference impedance is set by

the characteristic impedance Zn of the delav line.

Fig. 3. Coplanw strlphne open circmt and a lumped capacitance eqmvalent
cmcuit model.
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Fig. 4. Normalized open circuit reactance as a function of the frequency
determined from the de-embedded reflection coefficient and the FDTD Model.
D = 003 in, e, = 10.2. }t’ = 0.0285 in, S = 0.0055 in and 20 = 6750.

III. CPS OPEN CIRCUIT

A CPS open circuit is formed by abruptly ending the strip

conductors as shown in Fig. 3. A fringing electric field exists

at the open circuit between the two strip conductors and

hence gives rise to a capacitive reactance. This capacitive

reactance is modeled as a lumped capacitance Cf located

at the plane P – P’. Fig. 4 presents the normalized open

circuit reactance Xf /20 as a function of the frequency F,

for a fixed separation S. Fig. 4 also presents the normalized

reactance obtained using the FDTD technique. The difference

between the experimental and FDTD results can be attributed

to the finite metal thickness which was not accounted for

in the FDTD analysis. Specifically, in the FDTD method,

zero thickness perfect electric conductors were assumed. It

is worth mentioning that the circuit dimensions indicated in

Fig. 4, and in all the subsequent figures are actual dimensions
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TABLE I

OPEN END FRINGING CAPACITANCE Cf AS A FUNCTION OF THE SEPARATIONS BETWEEN THE
Two STRIP CONDUCTORSAT A FIXED FREQUENCY F = 3.5 GHz, D = 0.03 IN, G. = 10.2

Experimental FDTD Model Quasi-Static [16]
W = 0.029 * 0.0005 inch w = 0.028 W = 0.028

S (roils) Cf (fF) S (roils) ~ (s2) Cf (fF) S (roils) ZO(L2) C, (fF)
-------------------------------------------------------------- .. . .. . .. . . . .. . . . .. . . . . . .. .. . . . . . . . . . . . .. . . . . . . . . . . . . .

5.5 42.5 5.6 66.8 45.76 5.6 68.6 30.8
---------------------------------------------------- --------------------- ------------ ------------------------------

7.6 43.4 7.5 74.3 45.23 7.5 74.3 26.7
. .. . .. . .. . . . . . . . . . . . . . . . . . . .. . .. . . . . .. . .. .-------------------- .. . .. .-------- .. . . . . . . . . . ------------------------ . . . .

9.05 40.1 9.3 79.0 44.87 9.3 79.0 28.2
----------------------------------------- . . .. . . . . . . . . . . .. ------------- . .. . .. . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . -.

Fig. 5. Coplanar stripline open circuit with an extended strip conductor and

a lumped capacitance equivalent circuit model.

after fabrication. However, the FDTD analysis considered

dimensions slightly different from the actual dimensions due to

the limitations in the used uniform discretization. Specifically

for Fig. 4, the FDTD analysis considered a CPS open circuit

with S = 0.0056 in and W = 0,028 in,

Table I shows the open end fringing capacitance Cf for three

different separation distances S between the two strip conduc-

tors at a fixed frequency F. Also shown in Table I is the end

capacitance obtained using the closed form expression derived

in [16] which assumes a quasi-TEM mode of propagation on a

CPS. The difference between the measured and FDTD results

can be due to the reasons mentioned above. Also, for the CPS

dimensions used, the quasi-TEM assumption is rather poor

since the substrate thickness is equal to the strip width.

IV. CPS OPEN CIRCUIT WITH EXTENDED STRIP CONDUCTOR

A CPS open circuit with an extended strip conductor is

shown in Fig. 5. In this case a gap of width G is formed at the
open ends. An electric field exists across the gap G and hence

gives rise to a capacitive reactance. This capacitive reactance

is modeled as a lumped capacitance CO. located at the plane

P – P’. The capacitance C’O. is a parallel combination of the

fringing and the gap capacitances. Table II shows the open end

capacitance COCas a function of the open end gap width G at a

TABLE II

OPEN CIRCUIT CAPACITANCE COC AS A FUNCTION oiQTHE GAP
WIDTH G AT A FIXED FREQUENCYF = 3.5 GHz. D = 0.03 IN,

~. = 10.2, W = 0.0282 + 0.0003 m, S = 0.00575 + 0.00015 rN

G (miis) Coc(PF)

Experimental FDTD Model
------------------------ --. ------ ..--- ..------------- —-----------------..

6 0.1740 0.13
.. . . . . . . . .. .. . .. . .. . . . . . .. . .. . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . .

8.9 0.1709 0.116
.. . . . . . . . . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . .. . . . . . . .. . . . . . . . . . . . . . .

12 0.1581 0.112
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Fig. 6. Coplanar stripline short circuit and a lumped inductance equivalent
circnit model.

fixed frequency F. From Tables I and II, the capacitance C’O. is

about three to four times greater than the capacitance C’f. It is

worth mentioning that the numerical de-embedding technique

presented in [17] was used in conjunction with the FDTD

technique to characterize the open end CPS discontinuities.

Such a technique eliminates the need to use the CPS dispersion

characteristics. Moreover the FDTD model used S = 0.006 in,

W = 0.028 in and 20 = 70 Q.

V. CPS SHORT CIRCUIT

A CPS short circuit is formed by filling the slot with a

conductor as shown in Fig. 6. In this case a RF current tlows
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determined from the de-embedded reflection coefficient and the FDTD model,
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TABLE III

SHORT CIRCUIT INDUCTANCE L,. AS A FUNCTION OF THE
SEPARATIONS BETWEEN THE Two STRIP CONDUCTORSAT A

FIXED FREQUENCY F = 5.5 GHz D = 0.03 IN, c, = 10.2

----------------------------------------------------------------------------..............
Experimental FDTD Model

W = 0.0288 ~ 0.0003 inch W = 0.028
------.-- -------------------------- ------------------------------ ... .. . .. . . ---------- ------

S (ink)
.-----------------::!-H!----.-------..---:-!rn!?!-----.--?-!!-.--------!:!p.H!-

4.5 70.95 4.0 63.4 76.8
----------------------------------------------------------------- --------------------------

5.9 80.46 6.0 70,0 93.3

7.8 108.95 8.0 75.6 110.2
------- ------------------ -------- --------------------- . .. . .. . . .. . .. .. . . . . . .. .. .. . . . . .. . .. . .

around the end of the slot and hence there is magnetic energy

stored behind the termination. This magnetic energy gives

rise to an inductive reactance which is modeled as L.C and

located at the plane P – P’. Fig. 7 shows the variation of

the normalized short circuit reactance X.C/Zo as a function

of the frequency F, for a fixed separation S. The small

difference between the experimental and the FDTD modeled

results is due to reasons similar to those mentioned earlier

for an open circuit. The FDTD model considered a CPS short

with S = 0.0056 in and W = 0.028 in. Table III shows the

experimental and modeled short circuit inductance L~C as a

function of the separation S at a fixed frequency F.

VI. CPS SERIES GAP

A series gap of length G1 in one of the strip conductors is

shown in Fig. 8. The gap is modeled as a lumped Pi-network

consisting of two fringing capacitances Cl and a coupling

capacitance C2. Fig. 9 shows the de-embedded and FDTD

modeled S parameters for the CPS series gap as a function

of the frequency F. The FDTD model considers a CPS with

S = 0.0056 in, W = 0.028 in, and a series gap with GI =

0.00693 in. Fig. 10 shows the variation of the experimentally

obtained fringing and coupling capacitances, (2’1 and C2, as a

function of the gap width GI at a fixed frequency F. As the

gap width increases, the fringing capacitance increases and the

coupling capacitance decreases.

II

Fig. 8.
model.

Iw
s

Iw
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Coplanar stripline series gap and a lumped pi-eqmvalent circuit
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Fig. 9. Experimental and FDTD modeled S 11 and S21 as a function of
the frequency for the series gap. (a) Magnitude. (b) Phase. D = 0.03 in,

% = 10.2, Itr = 0.0284 in, S = 0.0056 in and G1 = 0.0067 in.

VII. CPS SPUR-SLOT AND SPUR-STRIP

A CPS spur-slot and a CPS spur-strip structures are shown

in Fig. 11. The spur-slot consists of a resonant structure

created within the width of one of the strips. This structure

is convenient to use when W is large and S is small. The

spur-slot can be modeled as a short circuit stub of length
1 x &(CPs) /4 in series with the main line. At resonance, the

stub prevents the flow of RF power to the load. On the other



SIMONS et al.: MODELING OF COPLANAR STRIPLINE DISCONTINUITIES

Gap width, GI (roils )--*

Fig. 10. Lumped fringing and coupling capacitances determined from

the de-embedded measured S-parameters as a function of the gap width.
D = 0.03 in, G = 10.2, W = 0.0284 in, S = 0.0056 in and F = 4.025
GHz.
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hand, the spur-strip consists of a resonant structure created

between the two strip conductors. The spur-strip is convenient

to use when W is small and S is large and can be modeled

as a open circuit stub of length 1 ~ &(CPSJ /4 in parallel with
the main line.

Fig. 12 shows the measured and FDTD modeled magnitude

of the S-parameters, S11 and S21, for a spur-slot as a function

of the frequency F. The FDTD model considers a CPS with

S = 0.0075 in, W = 0.0275 in and a spur-slot with W1 =

0.0075 in, Wz = 0.0125 in, Gap = 0.0125 in and 1= 0.645

715
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Fig. 12. Experimental and FDTD Modeled Magnitude of the S-parameters
S1I and SZI as a function of frequency for a spur-slot. D = 0.03 in,
~r = 10.2, W’ = 0.02’75 in, S = 0.0075 in, W1 = 0.0065 in, W2 = 0.013
in, Gap = 0.013 in and 1 = 0.65 in.

“0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Spur-slot length, t (in.)

Fig. 13. Experimental and FDTD modeled resonance frequency as a function
of the spur-slot length. D = 0.03 in, G. = 10.2,W = 0.0275in, S = 0.0075
in, lt’1 = 0.0065 in, W2 = 0.013 in, Gap = 0.013 in.

in. Fig. 13 shows the measured and FDTD modeled resonance

frequency ~0 as a function of the spur-slot length 1. The

measured resonance frequency for the spur-strip is observed

to be about the same as that of the spur-slot of equal length

over the 2 to 12 GHz frequency range.

VIII. CONCLUSION

The paper presented for the very first time a measurement

technique to obtain lumped equivalent circuit models for

the following CPS discontinuities: an abrupt open circuit,

an open circuit with an extended strip conductor, a short

circuit, a series gap in one of the strip conductors and a

spur-slot. The model element values are determined from the

discontinuity S-parameters which are de-embedded from the

measured S-parameters using a TRL algorithm. The model

elements are presented as a function of the discontinuity

physical dimensions for a specific substrate. The experimental

results are compared to data obtained using the FDTD method

and shown to be in good agreement. The measurement as

well as the simulation techniques are quite general and can be

extended to other substrate materials and higher frequencies.

The CPS has potential applications in the design of microwave

components such as filters, couplers, mixers, oscillators, and

amplifiers for the emerging wireless communications.
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